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SELF-REGULATORY CONTROL IN SPORTS 
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Introduction 

Sports performance critically depends on physical ftness and skill level. However, success 
also hinges on how well athletes deal with psychological obstacles that threaten optimal 
performance (Wolf, Bieleke, & Schüler, 2019). For example, in order to make a critical 
free-throw, basketball players have to ward of challenges to efective movement execution, 
triggered both externally (e.g. distraction by hostile chants) and internally (e.g. fear of fail-
ure). In the same vein, cyclists whose muscles are aching need to overcome their automatic 
inclination to ease up and slow down. These exemplary challenges are well within the 
scope of current defnitions of self-regulatory control1 as the “eforts people exert to stim-
ulate desirable responses and inhibit undesirable responses” (de Ridder, Lensvelt-Mulders, 
Finkenauer, Stok, & Baumeister, 2012, p. 77) or “the set of mechanisms required to pursue 
a goal, especially when distraction and/or strong (e.g., habitual) competing responses must 
be overcome” (Shenhav, Botvinick, & Cohen, 2013, p. 217). Thus, it seems plausible that, in 
addition to ftness and skill, sports performance hinges on the successful exertion of mental 
efort in the service of self-regulatory control. 

Indeed, a large body of research has found support for the importance of self-regulatory 
control in sports (Englert, 2016), both at the trait level (i.e. stable self-regulatory tendencies 
within an individual) and at the state level (i.e. situationally defned infuences on one’s ten-
dency to self-regulate). For instance, on the trait level, one study has shown that elite cyclists 
outperform non-elite peers in a reaction-time-based measure of trait self-control (Martin 
et al., 2016). In another study, youth athletes in an elite talent development program scored 
higher on a self-report measure of self-regulatory control than their non-selected peers 
(Wolf, Bertrams, & Schüler, 2019). In the recreational context, high self-regulatory control 
has been linked with better adherence to exercise regimens (Stork, Graham, Bray, & Martin 
Ginis, 2016). This makes intuitive sense, as self-regulatory control has been shown to help 
people deal with the difculties of adhering to valued behaviors (Wolf, Martarelli, Schüler, & 
Bieleke, 2020). At the state level, the application of self-regulatory control detrimentally af-
fects subsequent sports performance (for a meta-analysis, please see Giboin & Wolf, 2019, 
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but see also Holgado, Troya, Perales, Vadillo, & Sanabria, 2019). For example, impaired per-
formance after prior self-regulatory control has been found in such diverse sport settings as 
sprint-running (Englert, Persaud, Oudejans, & Bertrams, 2015) and dart throwing (Yang, 
Park, & Shin, 2019). Finally, it has been shown that physical efort causes feelings of mental 
exertion, impairs self-regulatory control, and leads to hypoactivations in control-relevant 
areas of the brain (Blain et al., 2019; Wolf, Schüler et al., 2019). This is consistent with the 
claim that physical performance requires self-regulatory control. 

A multitude of theoretical accounts have been proposed that specify why and when self-reg-
ulatory control is applied and why it sometimes appears to fail (Beedie & Lane, 2012; Inzlicht, 
Schmeichel, & Macrae, 2014; Kotabe & Hofmann, 2015; Kurzban, Duckworth, Kable, & 
Myers, 2013; Shenhav et al., 2013). In particular, recent years have seen substantial advance-
ments in our understanding of the guiding principles of self-regulatory control, as well as 
the neuronal structures that orchestrate its allocation (Munakata et al., 2011; Holroyd & 
Yeung, 2012; Cavanagh & Frank, 2014; Shenhav et al., 2017). In the present chapter, we 
will demonstrate how these developments can inform and advance neuroscientifc research 
on self-regulatory control in sports. In part one of this chapter, we will follow recent mech-
anistic approaches and conceptualize self-regulatory control as a reward-based decision. 
Specifcally, we introduce the expected value of control (EVC) theory (Shenhav et al., 
2013) as a mathematically explicit framework that provides a value-based computational 
expression for the allocation of self-regulatory control and that specifes the mechanistic 
foundation of self-regulatory control. 

In part two of the chapter, we will discuss recent technological advancements that have 
enabled neuroscientifc research even during full body movements, an important prerequisite 
for investigating neural processes during sports performance (Ekkekakis, 2009a; Perrey & 
Besson, 2018). This has enabled researchers to satisfy recent calls to investigate the “sporting 
brain” (Walsh, 2014, R859) and to examine whether fndings from basic cognitive neuro-
science can be applied to the feld of sports and exercise. We will summarize neuroscientifc 
research in sports through the lens of self-regulatory control, with a specifc focus on func-
tional near-infrared spectroscopy (fNIRS) as a neuroscientifc method that appears to be 
particularly suited for research in sports. 

Computational and Mechanistic Operating Principles of Self-Regulatory Control 

In this section, we will elaborate on the concept of mental efort and why it is central to the 
defnition of self-regulatory control. We will then introduce a mechanistic account of the 
processes that guide the allocation of mental efort in the service of self-regulatory control, 
based on the EVC theory. 

Self-Regulatory Control Is Effortful and Costly 

In keeping with this chapter’s focus on physical performance, we will use an analogy from 
physical efort to aid the defnition of mental efort. Assume, for instance, that a marathon 
runner is able to run a marathon in 02:08:00h (i.e. capacity). To qualify for the Olympics, 
he needs to run it in < 02:11:30h (i.e. task characteristics). Physical efort is what mediates 
between his running capacity and the time that is required for qualifcation, on the one 
hand, and the ultimately achieved fnishing time, on the other hand. Likewise, mental efort 
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can be conceptualized as that which “mediates between (a) the characteristics of a target 
task and the subject’s available information-processing capacity and (b) the fidelity of the 
information-processing operations actually performed, as reflected in task performance” 
(Shenhav et al., 2017, p. 100). Self-regulatory control is believed to be the force through 
which mental efort is exerted (Shenhav et al., 2017). Tasks vary in the degree to which they 
can rely on controlled vs. more automatic processes (Posner & Snyder 1975; Schneider & 
Shifrin, 1977). One of the major factors that can determine the control requirements of a 
task is the extent to which pursuing the task goal requires the individal to overcome more 
automatic (e.g. default) responses (Cohen, Dunbar, & Mcclelland, 1990; Shenhav et al., 
2013). To illustrate, when the runner is hurting, the automatic response tendency would be 
to stop. However, to qualify for the Olympics, this response needs to be controlled. Thus, 
although in this case the behavioral output relies on physical efort (e.g. engagement of lo-
comotor muscles), self-regulatory control (and therefore mental efort) is needed to override 
the automatic response tendency of stopping or slowing down. 

Although it is often crucial for success, people tend to avoid engaging in self-regulatory 
control because the mental efort required (and associated experiences of fatigue and frustra-
tion; Wolf, Sieber, Bieleke, & Englert, 2019) is experienced as aversive (Kool & Botvinick, 
2018; Westbrook & Braver, 2015; see also Box 1). Thus, applying self-regulatory control ap-
pears to carry an intrinsic disutility (Kool & Botvinick, 2018). Accordingly, people tend to 
mobilize efort only if the goal is subjectively worth it (Gendolla & Richter, 2010) and not 
to a greater degree than is warranted by the difculty of a given task (Wright, Mlynski, & 
Carbajal, 2019). This indicates an aversion against mobilizing more efort than necessary 
(Richter, Gendolla, & Wright, 2016). Returning to the example of the marathon runner: If 
the only goal is to qualify for the Olympics (i.e. no other incentives like winning the race or 
beating a rival are present), he should only run as fast as needed to qualify. This reasoning 
is in accordance with a large body of research showing that people try to conserve their 
resources when it comes to the mobilization of efort (Richter et al., 2016). Taken together, 
research suggests that self-regulatory control is treated as if it is costly and limited. 

Box 1: When Effort Adds Value 

Mental effort plays a key role in our understanding of self-regulatory control. An over-
whelming body of research shows that mental effort produces costs that people gen-
erally try to avoid (Kurzban, 2016). Sports seems to be at odds with this law of least 
effort (Hull, 1943). For most sports, especially endurance sports like running or cycling, 
physical and mental efforts are not only instrumental to reaching one’s goal; they often 
constitute the goal itself – that is, effort is often central to the sporting experience. To 
use the words of multiple Tour de France champion Greg LeMond: “it never gets easier, 
you just go faster” (Missel, 2017, para. 7). Yet, every year, millions of people pay con-
siderable amounts of money to participate in running competitions with neither the 
chance nor the expectation of winning (Andersen, 2020). For most of them, the cost of 
participating in such events – ranging from entry fees and costs for equipment and travel 
to the opportunity costs of training and the risk of suffering an injury (Maxcy, Wicker, & 
Prinz, 2019) – seems disproportionate compared to what they receive in return. This 
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makes it diffcult to explain why so many people freely choose to participate in sporting 
competitions. Interestingly, one experience recreational athletes appear to seek out in 
a marathon, or an ultra-marathon might simply be the experience of pushing through 
perceived boundaries and still keep going (Finn, 2018). 

As this example illustrates, some people engage in sports because it requires mental 
and/or physical effort and not despite of it (Loewenstein, 1999). This implies that effort 
(mental or physical) may in a certain case add value to an activity. From the perspective 
of the EVC framework, effort can add value in two different ways (Inzlicht, Shenhav, & 
Olivola, 2018): First, it might amplify the value of the expected outcome. Thus, success is 
more rewarding when it is achieved with high effort and failure feels worse when one had 
invested a lot of effort. In the words of Brazilian soccer legend Pelé: “The more diffcult 
the victory, the greater the happiness in winning” (Keville, 2015, para. 3). Second, effort 
itself might be intrinsically rewarding irrespective of the outcome. One possible explana-
tion for this might be a phenomenon referred to as learned industriousness (Eisenberger, 
1992): If athletes learn to directly associate effort with reward, the effort assumes the 
role of a secondary reinforcer. Indeed, athletes and their coaches often emphasize the 
need to make an effort, irrespective of the direct outcome. For example, golfer Arnold 
Palmer stressed that one should “always make a total effort, even when the odds are 
against you” (Park, 2013, para. 38). And the value of effort is very clearly expressed by 
Eddy Merckx – considered by many to be the greatest cyclist of all time – who stated that 
“when it’s hurting you, that’s when you can make a difference” (Alé La Merckx, 2018, 
para. 5). The paradoxical nature of effort as both costly and rewarding is not limited to 
experiences in the sports setting, and has recently started to receive research interest (for 
a review, please see Inzlicht et al., 2018), although comparatively little research has yet 
been conducted to investigate the ways in which effort adds value. Sports seems to be 
a domain where effort is held in very high regard and treated as an incentive in its own 
right. The feld of sports and exercise thus serves as a prime target for the investigation 
of this effort paradox. 

Various explanations have been proposed for why the capacity for self-regulatory con-
trol might be limited. For example, resource-based accounts suggest that self-regulatory 
control depletes a metabolic resource (see Chapter 8, this volume; Baumeister, Bratslavsky, 
Muraven, & Tice, 1998). In contrast to such structural limitations in the capacity for self-
regulatory control, other accounts focus on the computational properties of the neuronal 
systems that govern control. From this perspective, exertion of self-regulatory control is 
perceived as efortful not because a resource has been depleted but to index the costs that 
arise in tasks that compete for the same neural representations (Feng et al., 2014; Musslick 
et al., 2016). This explanation can be transferred to the context of sports and exercise: If 
an athlete is applying self-regulatory control to perform at her best in a cycling time trial, 
performance in concurrent tasks that rely on control will likely be impaired (if performance 
is not impaired, then the task should at least be perceived as more efortful). For example, 
while the athlete has to control the impulse to go slower, a concurrent task that also relies on 
impulse control (e.g. to control one’s emotional expression) would require self-regulatory 
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control to manage both tasks concurrently, thereby leading to impaired performance and/or 
increased sensation of mental efort. Tentative support for this interpretation in the context 
of physical performance comes from the occurrence of cognitive motor interference that 
already occurs in simple motor tasks like walking (for a meta-analysis, please see Al-Yahya 
et al., 2011). Likewise, impaired cognitive performance in dual-task situations has been 
found in diverse sport settings such as table tennis (Schaefer & Scornaienchi, 2020), swim-
ming (Stets, Smith, & Helton, 2019), or climbing (Darling & Helton, 2014). For example, 
when participants were asked to perform an n-back task while returning table tennis balls 
from a ball machine, this led to impaired n-back performance (Schaefer & Scornaienchi, 
2020). Interestingly, this dual-task cost was signifcantly more pronounced in novices than 
in experts, which might point toward more automated processing of demands in experts 
(Schneider & Shifrin, 1977). 

While the exact reasons that limit the brain’s capacity for self-regulatory control are still 
debated (Kurzban et al., 2013; Shenhav et al., 2017), it appears to be clear that people invest 
mental efort sparingly and treat its mobilization as if the capacity for control is limited. 
Consequently, researchers have tried to understand the factors that determine how people 
choose to allocate self-regulatory control. 

The Expected Value of Control Theory 

Research on self-regulatory control in sports has long been dominated by resource-based 
conceptualizations of self-regulatory control (for an overview, please see Englert, 2016). 
Recently, these resource-based accounts have been challenged empirically (Carter & Mc-
Cullough, 2014; Hagger, Chatzisarantis et al., 2016; Wolf, Baumann, & Englert, 2018) 
as well as conceptually (Inzlicht et al., 2014; Kurzban et al., 2013), and recent theoretical 
accounts now converge toward conceptualizing self-regulatory control as some form of 
reward-based choice (Berkman, Hutcherson, Livingston, Kahn, & Inzlicht, 2017; Inzlicht 
et al., 2014; Kool & Botvinick, 2014; Kurzban et al., 2013; Wolf & Martarelli, 2020). How-
ever, these theoretical accounts have so far rarely been adopted in research on self-regulatory 
control in sports and exercise. This is puzzling because reward-based accounts play an 
important role in research on motor control (Körding, Fukunaga, Howard, Ingram, & 
Wolpert, 2004; Manohar et al., 2015; Morel, Ulbrich, & Gail, 2017; Shadmehr, Huang, & 
Ahmed, 2016), which is fundamental to any sporting activity. Here, we present the EVC 
theory as one such reward-based model of self-regulatory control (Shenhav et al., 2013, 
Shenhav, Cohen, & Botvinick, 2016). The EVC theory synthesizes core concepts of various 
control theories into an integrative framework that specifes the computational properties as 
well as the mechanistic underpinnings of self-regulatory control (for an illustration, please 
see Figure 11.1a). 

Computation of the EVC 

According to the EVC theory, people allocate self-regulatory control in a way that maxi-
mizes the expected payof while minimizing the mental efort that is required. These col-
lectively determine the expected value of a given control allocation (EVC). The outcome of 
this cost-beneft analysis (the EVCs of candidate control confgurations) determines which 
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task(s) are most worth allocating self-regulatory control to, and how much control should be 
allocated (Figure 1b). Equation 11.1 formalizes how the EVC is calculated (Shenhav et al., 
2013): 

ˆ � 
( ) ˘

˘˜Pr (outcome |signal, state Value) (outcome  )�� Cost signal)EVC signal,  state = ˙ − (  (11.1) i i 
ˇ i � 

The situation (denoted as state) a person applies control to is shaped by internal and ex-
ternal states the person fnds itself in. For example, a marathon runner might face a strong 
headwind (external) and also have some lingering doubts regarding her stamina over the 
full distance (internal). In any given state, diferent potential control signals of varying vigor 
can be specifed (Figure 1a). The marathon runner’s overall goal might be to qualify for the 
Olympic Games. To do so, she has to complete the distance faster than a set target time and 
this is likely to be very hard. Thus, while running, she has to control the automatic impulse 
to ease up and instead stick with her target running pace. Over the course of the competi-
tion, the efort required for sticking to the race pace will rise due to fatigue that is setting 
in.2 The athlete might reason that she can only consistently resist the impulse to ease up as 
long as perceived physical exertion does not go beyond 80% of her maximum in the frst half 
of the race, to avoid what runners refer to as “hitting the wall”. Further, this might allow 
her to increase the intensity late in the race and produce a fnal spurt if needed. Control sig-
nals therefore vary in identity (e.g. “run” and “inhibit inclination to ease up”) and in intensity 
(e.g. for running this might vary from 0% to 100% of maximum efort). 

FIGURE 11.1 The Expected Value of Control (EVC) theory. (a) The EVC theory predicts that 
dACC integrates information about relevant incentives and task demand to deter-
mine the overall EVC of potential control confgurations. On the basis of this EVC 
calculation, the dACC specifed the optimal (EVC-maximizing) set of control sig-
nals, and signals these to relevant downstream regions which guide the execution 
of these control signals. Adapted from Shenhav et al. (2016). (b) Within the EVC 
framework, increases in the expected difculty of a task (bold vs. dashed lines) will 
often lead to the prediction that additional control is needed to achieve a given level 
of payof (green curves). This expected payof is discounted by the expected cost 
(red curves) of exerting the necessary mental efort (control intensity), determin-
ing the overall EVC of that control intensity (blue curves). The maximum of this 
EVC curve determines the optimal control setting (black arrows). Adapted from 
Shenhav et al. (2013). 
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EVC can be calculated for any available confguration of control signal identities and 
intensities. As can be seen in the right part of Equation 11.1, the EVC of any given control 
signal confguration comprises two main components: An expected payof and a cost. The 
expected payof is determined by considering potential future outcomes that are relevant 
to one’s task – including potential praise and pride that come with success, and potential 
admonishment and embarrasment that come with failure – and weighing these potential 
outcomes by the likelihood that they would occur under a particular control setting. For 
instance, as someone increases their physical exertion, they increase the likelihood of suc-
cess (and attendant positive incentives) and decrease the likelihood of failure (and attendant 
negative incentives). However, increasing physical exertion is also costly: All things being 
equal, exercise at very high intensities (e.g. 95% of maximum) generally elicits a more neg-
ative afective response than exercise at lower intensity (e.g. 80% of maximum) (Ekkekakis, 
Parftt, & Petruzzello, 2011; Rolof et al., 2020). This cost is accounted for by the fnal term 
in the equation, which trades of against the expected payofs, discounting the potential 
positive outcomes that accrue from increasing intensities of physical exertion. As can be 
inferred from Equation 11.2, 

= max EVCˆ signal ,outcome Value(outcome) ImmediateReward(outcome)+ ˙ i ̌ ( i )�̆ (11.2) 

the outcome value refects the value of the immediate change that occurs due to applying 
self-regulatory control (denoted as ImmediateReward), as well as accounting for the EVC of 
future control signals that are feasible based on the chosen signal (expressed as a maximiza-
tion of EVC taking into account feasible control signals). This recursive defnition of out-
come value is important, because it highlights that the chosen EVC is not only maximized 
based on the immediate reward but also on the value of more distal states. For example, the 
ImmediateReward of running only at 80% of maximum exertion might in fact be negative, 
because the athlete will run slower than at 95% of maximum exertion and this might lead to 
the athlete being dropped from the lead group. However, specifying a control signal of such 
(comparably) little intensity might allow this athlete to maintain the target pace over the full 
distance, better positioning her to achieve her goal of qualifying for the Olympics. Thus, the 
value of an outcome is the sum of proximal and distal changes that are brought about by the 
specifed control signal. However, as humans prefer immediate rewards over future rewards 
(Critchfeld & Kollins, 2001; Frederick, Loewenstein, & O’Donoghue 2002), a discounting 
factor γ is introduced to discount the impact of future EVCs in determining the overall 
value of the outcome that is achieved by the current control signal. This discounting factor 
is a variable ranging from zero to one to account for intra- and inter-individual diferences 
in discounting. Interestingly, a large-scale analysis of 1.7 million recreational runners’ pac-
ing strategies showed that relatively fast starts and fast fnishes were both predictors of poor 
overall performance (Smyth, 2018). From an EVC perspective, this might be attributed to a 
suboptimal discounting factor (i.e. by over- or underweighting future EVCs). 

EVC theory proposes that the human control system performs these calculations, com-
pares the EVCs for diferent control signals, and then selects the one where EVC is maxi-
mized. Recent work has validated these predictions by showing that simulated agents that 
are designed to maximize their EVC adjust their task performance based on the incentives 
and task demands in similar ways as has been observed in empirical studies of motivation 
and self-regulatory control (Musslick, Shenhav, Botvinick, & Cohen, 2015; Lieder, Shen-
hav, Musslick, & Grifths, 2018; Bustamante, Lieder, Musslick, Shenhav, & Cohen, 2020). 
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Mechanistic Underpinnings of Self-Regulatory Control 

In addition to specifying the computational properties that underlie self-regulatory control, 
EVC theory also specifes candidate neural structures that mediate diferent processes in-
volved in allocating and adjusting self-regulatory control (Shenhav et al., 2013). EVC the-
ory delineates three core functions: Specifcation, Regulation, and Monitoring. Self-regulated 
control consists of a continuous loop in which control signals are specifed, applied, and the 
outcome is monitored to assess whether the control signal needs to be adjusted. EVC theory 
proposes that the dorsal anterior cingulate cortex (dACC) sits at the interface of monitor-
ing and specifcation, whereas regulation is primarily mediated by regions downstream of 
dACC that execute specifc types of self-regulatory control, such as the lateral prefrontal 
cortex (lPFC). The functions EVC theory ascribes to dACC and lPFC are well supported 
by a large body of research (for reviews, please see Badre, 2008; Heatherton, 2011; Miller & 
Cohen, 2001; Shenhav et al., 2013). 

Adaptive control thus requires an individual to monitor their current state and the value 
of potential future outcomes that might be attained with available control. Such monitoring 
is intuitively important in sports and exercise: For athletic success, it is crucial to perform at 
(or close to) one’s physiological limit without overextending oneself. Thus, athletes need to 
closely monitor their current state (e.g. pace) and fexibly adjust their behavior if this state is 
at odds (e.g. too slow) with the goal they aim to achieve (e.g. qualifying for the Olympics). 
As we have outlined above, these adjustments are made in order to invest self-regulatory 
control efciently. In regard to control signal intensity, this means that the EVC is max-
imized when the intensity is as low as possible while still enabling goal attainment. For a 
marathon runner trying to qualify for the Olympic games, this implies that she will only 
invest the amount of mental efort needed to just achieve the qualifying time.3 However, 
the emphasis on not wasting resources might sometimes lead to the specifcation of a control 
signal intensity that is too low. The marathon runner might, for example, follow a conser-
vative pacing strategy (e.g. negative split times) but if she is unable to make up for lost time 
later in the race, she might eventually miss the qualifcation time. Thus, selecting an opti-
mal pacing strategy4 is crucial to athletic success (Abbiss & Laursen, 2008). 

Research shows that the dACC monitors various indicators of state information (e.g. 
information that is relevant for control signal identity and intensity specifcation) in a fash-
ion that is likely to subserve the computation of the EVC (Shenhav et al., 2013, 2016). The 
plethora of diferent bits of information that might be monitored during exercise is pro-
vided by various brain areas (Figure 11.1a): Research indicates that interoceptive informa-
tion (e.g. heavy breathing, locomotor fatigue) is processed by the insula (e.g. Gehrlach et al., 
2019; Livneh et al., 2020), rewards (e.g. joy of running fast, achieving the qualifcation) 
are encoded by the ventromedial PFC (Gläscher, Hampton, & O’Doherty, 2009; Strait, 
Blanchard, & Hayden, 2014), and the amygdala may signal negative afective states such as 
fear of failure and exercise-induced pain (Neugebauer, Li, Bird, & Han, 2004). The dACC 
monitors signals from these and other structures as information for computing the EVC. 
The monitored information then needs to be integrated to specify a control signal that max-
imizes EVC. Research indicates that the specifcation and, if required, adjustment of the 
control signal is performed by the dACC (Cavanagh & Frank, 2014; Phillips, Johnston, & 
Everling, 2011; Shackman et al., 2011; Ullsperger, Danielmeier, & Jocham, 2014). 

The EVC-maximizing control signal is then relayed to relevant downstream regions for 
execution. For many forms of self-regulatory control (e.g. controlling the impulse to get 
into a shoving match with an opponent after a foul; pulling oneself together to go out to 
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train in the pouring rain), the region that appears to be most critical for this execution is 
lPFC (Miller & Cohen, 2001). The dACC and lPFC share strong reciprocal connections 
(Heilbronner & Hayden, 2016), and tend to co-activate in most control-demanding tasks 
(Duncan, 2010; Niendam et al., 2012). The strength of this dACC-lPFC co-activation has 
been shown to be predictive of good self-regulatory control, for instance improved perfor-
mance on a rotation-letter task (Kondo, Osaka, & Osaka, 2004). Of particular relevance 
to our central proposition in this chapter, namely that self-regulatory control is important 
for controlling sports performance, lPFC is also well-connected to structures in the motor 
system, including the premotor cortex, which is, in turn, extensively connected to areas 
of relevance for direct motor output, like the primary motor cortex and the basal ganglia 
(Miller & Cohen, 2001). The connections between PFC and the basal ganglia are of interest 
in the domain of sports because the basal ganglia are believed to play a key role in generating 
central fatigue. Physical performance depends strongly on the capacity to tolerate fatigue, 
which may depend on top-down regulation of striatum by prefrontal cortical structures 
(Chaudhuri & Behan, 2000). 

Cortical Activity during Self-Regulated Sports Performance 

The bulk of the neuroscientifc evidence that we have presented above stems from animal 
studies or human imaging studies that were performed under conditions that do not mirror 
real-world situations. Although it has been proposed that sports might be the “brain’s big-
gest challenge” (Walsh, 2014, p. 859), research on the brain while a person is doing sport is 
still comparably scarce (Perrey & Besson, 2018). However, this is rapidly changing. Over the 
last 25 years, researchers have become increasingly capable of and interested in the investiga-
tion of the sporting brain (Figure 11.2a). Of particular interest for the present chapter is the 
drastic uptick in research on the brain during sports. To illustrate this, we conducted a web of 
science search that combined the topics “sports” and “brain” and that also required the word 
“during” in the title of published articles (Figure 11.2b). This search returned only eight hits 
during the 20-year time span from 1995 and 2004. In the following 15 years, another 171 
papers have been published and in 2019 alone, 26 papers fulflled these search criteria. Thus, 
while this literature search is by no means comprehensive, it seems safe to say that research 
on the sporting brain is garnering momentum. 

One likely reason for this momentum is the introduction of more portable and more 
robust technologies for measuring cortical processes during sports. Particularly, fNIRS and, 
to a lesser extent, electroencephalography (EEG) have been increasingly used in the sports 
context in recent years (Perrey & Besson, 2018). While most readers are likely familiar 
with the basic operating principles of EEG, fNIRS is a comparatively recent neuroimaging 
technology whose specifc advantages and disadvantages are less well known. Thus, prior 
to summarizing the literature on self-regulated sports performance, we will briefy describe 
the operating principles of fNIRS. 

Measuring the Sporting Brain: fNIRS 

Neuronal activity consumes energy and local changes in neuronal activity cause local in-
creases in oxygenated blood. In the blood, oxygen is transported by the chromophore he-
moglobin, which occurs in an oxygenated (HbO) and a deoxygenated (HbR) variant. Like 
functional magnetic resonance imaging, fNIRS tracks the resultant change of balance be-
tween HbO and HbR as a marker for neuronal activity. fNIRS uses NIR light to measure 
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  FIGURE 11.2 Web of Science Search (per January 2020) on the publication trends for neuroscien-
tifc research in regard to sports. Panel (a) illustrates the broad increase in research 
into the sporting brain (search terms: Sports AND brain). Panel (b) only includes 
papers that additionally have the term “during” in their title, to illustrate the rela-
tive scarcity and the increase in research on brain activity while people do sports. 

changes in HbO and HbR non-invasively in the cerebral cortex (Scholkmann et al., 2014). 
To do so, NIR light emitting senders and NIR light sensitive detectors are placed on the 
participants’ scalp (see Figure 11.3a), according to a predefned setup (see Figure 11.3b) that 
is designed to capture regions of interest (see Figure 11.3c). The NIR light spectrum ranges 
from 700nm to 1400nm and within this spectrum, Hb0 absorbs substantially more light at 
ranges above 830nm and HbR absorbs more light at 760nm (Ekkekakis, 2009). Capitalizing 
on this diferentiation in absorption spectra, fNIRS senders emit light in two wavelengths 
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  FIGURE 11.3 fNIRS Setup: (a) Schematic illustration of NIR light pathway between emitter 
and detector, (b) illustration of fNIRS montage designed to capture oxygenation 
changes in the dorsolateral prefrontal cortex, and (c) illustration of the sensitivity 
profle for capturing specifc regions based on the montage designed to capture 
changes in the dorsolateral prefrontal cortex. 

(e.g. 760nm and 850nm) and detectors nearby5 track how much of the emitted NIR light 
leaves the scalp. Relative changes in the detected light are then analyzed as indicators for 
Hb0/HbR fuctuations, which serve as a proxy for change in cortical activity (Ferrari, 
Mottola, & Quaresima, 2004). For assessing cortical activity during sports, fNIRS has been 
regarded as the best suited technology that is currently available (Ekkekakis, 2009; Herold, 
Wiegel, Scholkmann, & Müller, 2018). Most important for sports settings, fNIRS is com-
paratively robust to motion artifacts, has acceptable temporal resolution and – due to its 
portability – can be used in settings with high external validity (Ekkekakis, 2009; Strang-
man, Culver, Thompson, & Boas, 2002). fNIRS has even been used to measure activity in 
the motor cortex in freely moving participants (Piper et al., 2014). Specifcally, these authors 
were interested in whether hemodynamic changes that originate from hand movement 
could be captured while participants were sitting on a bike in decreasingly less-controlled 
conditions: Participants either sat on a stationary bike without pedalling, were pedalling on 
a stationary bike, or were freely riding their bike outside. Although an increase in external 
validity was acompanied by an increase in motion artifacts, the hemodynamic response that 
was triggered by the hand movement in the contralateral motor cortex could still be recov-
ered (Piper et al., 2014). In addition, compared to technologies like fMRI, fNIRS is cheap 
to acquire and produces little running costs (Wolf, 2017). Finally, compared to fMRI and 
EEG, fNIRS measurements tend to be perceived as less invasive and aversive by participants 
(Cutini & Brigadoi, 2014). Constraining its applicability, fNIRS can only be used to reli-
ably measure oxygenation changes in superfcial cortical areas, whereas limited depth pen-
etration prevents the measurement of deep brain areas (Ferrari & Quaresima, 2012). With 
respect to the key cortical structures involved in self-regulatory control, fNIRS is therefore 
well-suited for monitoring activity in the lPFC but not in the dACC. Thus, most of the lit-
erature we review below has focused on lPFC, whereas research on dACC is scarce. Further, 
although the spatial resolution of current fNIRS devices is ≤1 cm (Ferrari & Quaresima, 
2012), fNIRS is less accurate than the spatial resolution that can be achieved with fMRI. 
Thus, for research that requires very precise localization or is concerned with subcortical ar-
eas, fNIRS is less well-suited. However, to assess group-level efects (e.g. comparing groups 
of trained and non-trained participants), fNIRS has proven to be a reliable neuroimaging 
technique (Scholkmann et al., 2014) and has accordingly gained in popularity in the domain 
of sports in recent years (for a more comprehensive introduction of fNIRS to research in 
sports, please see Ekkekakis, 2009; Perrey & Besson, 2018). 
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Brain Activity during Self-Regulated Sports Performance 

Only recently have researchers started to explicitly conceptualize sports performance as 
a self-regulatory challenge (Marcora, 2008; McCormick, Meijen, Anstiss, & Jones, 2018; 
Pageaux, 2014; Wolf, Bieleke et al., 2018). Consequently, many early studies on the brain’s 
role in exercising have focused on explaining exercise-induced activation changes in the 
brain from a physiological point of view (Rooks, Thom, McCully, & Dishman, 2010; 
Secher, Seifert, & Van Lieshout, 2008). For example, a systematic review of 25 fNIRS 
studies that were published between 1999 and 2009 concluded that with increasing exercise 
intensity, activation in the lPFC increased until it dropped at very high intensities (Rooks 
et al., 2010). One interpretation of this pattern suggested that this refects an automatic 
physiological response that is initiated to prevent harmful threats to bodily homeostasis 
when exercise intensity is dangerously high6 (Noakes, Peltonen, & Rusko, 2001; Rooks 
et al., 2010). However, rather than refecting an obligatory response to a physiological lim-
itation, these same fndings could refect the endpoint of a decision process, which weighs 
the value of applying further efort against the cost of this efort. Specifcally, these changes 
in lPFC activity could be conceptualized in terms of variability in self-regulatory control: 
During an incremental exercise protocol (for example, riding on a cycling ergometer until 
exhaustion), the self-regulatory demands rise steadily because the task becomes increas-
ingly more challenging and participants have to fght the impulse to quit. From an EVC 
perspective, to apply the self-regulatory control that is required to continue in spite of these 
aversive sensations, the control signal intensity needs to be constantly upregulated by the 
dACC and more regulative control needs to be applied by the lPFC (Figure 1b). Thus, if one 
understands an incremental exercise task as a self-regulatory challenge (Wolf, Bieleke et al., 
2018), an increase in lPFC oxygenation is expected over time. This assumption is supported 
by fndings of recent fNIRS studies. For example, in one study, lPFC oxygenation during 
a 30-minute cycling task increased as a function of duration and intensity in a sample of 
regularly exercising athletes (Giles et al., 2014), probably accompanying increasing levels of 
self-regulatory control. Similarly, when participants had to produce 50% of their maximum 
voluntary handgrip force, this self-control-demanding performance was associated with 
higher lPFC oxygenation, compared to a condition when only 30% of maximum force 
was required (Guo, Ma, & Chen, 2019). However, at a certain exercise intensity, the cost 
of exerting the level of self-regulatory control that would be required to continue with the 
task (e.g. controlling the impulse to stop) will exceed the expected payof from the task (e.g. 
from receiving course credit for participating in an experiment). From an EVC perspec-
tive, this shift in EVC should motivate the person to reduce the intensity of self-regulatory 
control they are applying (Frömer, Lin, Dean Wolf, Inzlicht, & Shenhav, 2020), leading to 
a drop in PFC oxygenation and subsequent task termination. Indeed, an EEG study where 
cyclists completed an incremental cycling test showed that after an initial rise in PFC activa-
tion, a signifcant drop was observed after the respiratory compensation point (Robertson & 
Marino, 2015). A similar result could be observed in an fNIRS study with trained cyclists: 
In a progressive maximal cycling exercise to exhaustion, lPFC oxygenation increased in the 
frst part of the cycling task but decreased signifcantly prior to task termination (Rupp & 
Perrey, 2008). Interestingly, a drop in lPFC activation does not lead to immediate task 
termination but participants continue for some more time7 (Wolf, Bieleke et al., 2018). 
One possible explanation for this fnding is that exercisers specify control signal intensities 
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that have a built-in anticipatory bufer to be prepared in case exercise gets more demand-
ing. The quick drop in lPFC oxygenation that has been observed prior to task termination 
might then refect the dropping of EVC until the specifed control intensity does not suf-
fce to continue with the task. This is in line with research showing that a certain activity 
level in lPFC is required to engage in an efortful task (Hosking, Cocker, & Winstanley, 
2016). In addition, this pattern might also refect some form of task inertia: Changing a self-
regulatory control signal produces costs in itself and these reconfguration costs can deter 
people from switching to another activity (Monsell, 2003; Musslick, et al., 2018). 

Trained Athletes Process Exercise-Induced Demands More Effciently 

Some studies have compared exercise-induced cortical activation changes in trained athletes 
and untrained participants (Ludyga, Gronwald, & Hottenrott, 2016; Rooks et al., 2010; 
Seidel, Carius, Roediger, Rumpf, & Ragert, 2019). Interestingly, in the systematic review 
by Rooks et al. (2010), the drop in PFC oxygenation prior to task termination has been 
observed in untrained participants but not in trained athletes. Trained athletes have exten-
sive experience in adjusting their mental and physical eforts as a function of the challenge 
at hand, by interpreting sensations from their body. It is therefore conceivable that trained 
athletes are better able to anticipate expected control costs and the likelihood of potential 
future rewards, resulting in better-calibrated estimates of EVC. Behavioral data in support 
of this hypothesis comes from an analysis of the pacing profles of 190,228 fnishers of the 
New York Marathon. Here, the variability in 5km split times was substantially lower for 
top runners compared to less successful runners (Santos-Lozano, Collado, Foster, Lucia, & 
Garatachea, 2014). 

Further, the neural efciency hypothesis suggests that experts are more efcient in using 
their cortical resources for performing mental operations (Dunst et al., 2014). For example, 
more intelligent individuals perform cognitive tasks with lower brain activation, indicating 
the investment of less mental efort (Dunst et al., 2014). Applying this fnding to the sports 
setting, trained athletes exhibit a less pronounced increase in PFC oxygenation during in-
cremental exercise than untrained participants (Rooks et al., 2010). This is also in line 
with research showing that participants who score highly on a self-report measure of trait 
self-regulatory control display a less steep increase in lPFC oxygenation over the course of 
a fatiguing static muscular endurance task (Wolf, Schüler et al., 2019). This might point 
toward a more efcient use of processing resources. Interestingly, when task demands were 
standardized with respect to participants’ individual capability (e.g. 60% of one’s maximum 
power output on a cycling task), these expert-novice diferences in brain oxygenation have 
not been observed (Dunst et al., 2014; Seidel et al., 2019). Adding to evidence from fNIRS 
studies, a recent study used EEG to measure the α-wave/β-wave ratio as a marker for neural 
efciency,8 and compared well-trained to less well-trained cyclists (Ludyga et al., 2016). 
Higher α/β ratios were observed over frontal sites in well-trained cyclists, supporting the 
neural efciency hypotheses. Although they do not explicitly refer to self-regulatory con-
trol, the authors suggest that superior athletes might be better at inhibiting task-irrelevant 
cognitive processes. Going back to the proposition that the control demands of a task vary 
as a function of its automaticity and of its reliance on shared local processing pathways, 
these fndings ft well into the theorizing on self-regulatory control we present here. Com-
pared to non-athletes, trained athletes have been repeatedly exposed to the multitude of 
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self-regulatory challenges one faces during exercise (McCormick, Meijen, & Marcora, 
2016) and this experience likely leads to a greater automatization in the processing of these 
regulatory demands.9 Thus, it is conceivable that trained athletes process self-regulatory 
demands during sports more efciently and specify more realistic EVCs that are more accu-
rately matched to the current task demands. 

Psychological Manipulations Affect Cortical Changes during Sports 

Recently, researchers have started to investigate the efect psychological manipulations have 
on efort-related sensations and on cortical activity while participants perform sports. For 
example, one way to reduce the self-regulatory costs of an action is to make that action 
more automatic (Bayer, Achtziger, Gollwitzer, & Moskowitz, 2009; Gollwitzer, 1999; see 
also Chapter 12 for an in-depth discussion of the topic). Accordingly, researchers have in-
vestigated the efects of self-regulatory strategies that aim to automatize behavior (Bieleke & 
Wolf, 2017; Wolf, Bieleke et al., 2018). Interestingly, while such a self-regulatory interven-
tion did not lead to improved performance in a static muscular endurance task, participants 
were able to perform the task with a less pronounced increase in lPFC activation, indicating 
that the task had been performed in a neuronally more efcient way (Wolf, Bieleke et al., 
2018). Another study used the multi-action plan (MAP) model (Robazza, Bertollo, Filho, 
Hanin, & Bortoli, 2016) to derive functional and dysfunctional pacing strategies and assess 
their efect on cycling performance and on EEG coherence (as a measure of functional con-
nectivity; Di Fronso et al., 2018). When applying the dysfunctional strategy, participants 
were asked to focus their attention internally on feelings of muscle exertion. According to 
the MAP model, this internal focus on aversive sensations is detrimental to performance 
because it enhances perceived fatigue. Indeed, applying a dysfunctional strategy was as-
sociated with higher EEG coherence at high intensities, potentially indicating excessive 
attentional focus on muscle exertion (Di Fronso et al., 2018). Interpreting this fnding from 
the perspective of self-regulatory control, adopting a dysfunctional pacing strategy might 
have resulted in inefcient or excessive allocation of self-regulatory control. In line with 
this argument, low coherence was observed when participants adopted a functional pacing 
strategy. Other researchers induced heat stress to alter the costs of exercise. Here, changes 
in frontal areas of the brain were observed, again likely refecting changes in the “capacity 
to sustain mental readiness and arousal” (Périard, Pauw, Zanow, & Racinais, 2018, p. 1). 

We are aware of only one study that has investigated the infuence of experimentally 
manipulating the value of self-regulatory control on lPFC oxygenation and physical perfor-
mance: In this fNIRS study, participants performed an isometric knee extension task until 
voluntary task termination on two occasions (Giboin, Gruber, Schüler, & Wolf, 2019). In 
the control group, participants received the same reward per minute in both sessions. Par-
ticipants in the experimental group received 50% less reward per minute in Session 2 com-
pared to Session 1, but were also compensated with an upfront payment that was calibrated 
so they would earn exactly the same total reward in the second session if they performed the 
task for the same duration as in the frst session. Previous research has shown that this form 
of income-compensated wage decrease (ICWD) reduces the willingness to invest self-regulatory 
control during that second session (Kool & Botvinick, 2014). Consistent with this fnding, 
lPFC oxygenation was lower in the ICWD group in the second session. However, counter 
to expectations, this decrease was not associated with poorer performance, as would be 
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expected if this group was exerting less mental efort. Instead, the ICWD group in fact 
persisted longer in the knee extension task. One potential explanation for this is that the 
unexpected performance improvement we observed was achieved by a more efcient exe-
cution of the task. Indeed, post-hoc analyses revealed that participants in the ICWD group 
deviated less from the target force that had to be produced, thereby executing the task with 
less force than the control group. There were no group diferences in perceived efort and in 
a host of objective markers of physiological exertion (maximal voluntary contraction, vol-
untary activation, potentiated twitch at rest, and electromyographic activity). Collectively, 
these fndings suggest that, under certain conditions, increasing the value of self-regulatory 
control might lead to an overexertion of physiological resources and thereby produce more 
costs and hamper performance. Interestingly, this aligns well with recent work showing 
that predictions people make from previous reward learning can cause them to overexert 
self-regulatory control (Bustamante et al., 2020). 

Another branch of research has investigated the efects of providing inaccurate informa-
tion regarding the duration of an endurance task on lPFC oxygenation and performance. 
For example, in one study, participants either knew or did not know how long a cycling 
task was going to last (Wingfeld, Marino, & Skein, 2018). Withholding information on task 
duration can be understood as a manipulation that complicates the initial computation of 
the EVC and, subsequently, the adequate updating of EVC based on ones’ current state. In 
line with this reasoning, participants who knew the distance invested more efort at the end 
of the task which was accompanied by an increase in lPFC oxygenation. In contrast, partic-
ipants without this information adopted a more conservative pacing strategy and performed 
worse (Wingfeld et al., 2018). A similar pattern was observed in a cycling study where one 
group of cyclists was told to cycle for ten minutes, while a second group was told to cycle for 
sixty minutes (Radel, Brisswalter, & Perrey, 2017). However, in the second group, the task 
was terminated after ten minutes as well. Participants who expected to expend their efort 
over a longer period of time displayed lower lPFC activation than participants who expected 
to cycle for only ten minutes. 

Beyond Endurance Performance 

The bulk of the neuroscientifc literature we reviewed here concerned endurance per-
formance. This has at least two reasons: First, the self-regulatory challenges of endurance 
performance are ideal to study self-regulatory control, given that the regulation of efort is 
at the heart of endurance sports and that perceived exertion is a fundamental sensation that 
characterizes the application of self-regulatory control (Wolf & Martarelli, 2020). Second, 
endurance performance – especially time trial cycling or static muscular endurance – allows 
for a comparatively controlled and stable measurement of cortical processes because the up-
per body is relatively stable and athletes usually do not make abrupt movements. 

However, researchers have also investigated other types of sports, and their fndings are 
compatible with those obtained in the domain of endurance performance. For example, a 
recent study found that a more complex juggling task (e.g. 5-ball cascade vs. 2-ball cascade) 
was accompanied by more oxygenation over motor areas, whereas a higher level of juggling 
expertise tended to be associated with less oxygenation (Carius et al., 2016). However, as 
activity was only monitored over motor areas it remains unclear whether the juggling task 
also elicited an increase in lPFC oxygenation. Considering the projections from the lPFC 
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to premotor areas (Miller & Cohen, 2001) and the self-regulatory demands imposed by the 
task (i.e. attentional control for tracking ball trajectories), this would be likely. Another 
recent study investigated changes in oxygenation in the lPFC during a series of sprint start 
sequences (Wolf, Thürmer, Stadler, & Schüler, 2019). Participants were instructed to either 
produce a fast sprint start on the Go-signal or not to start on the Go-signal (no-start condi-
tion). Thus, in the condition where participants actually had to start, they had to balance the 
impulse to start too fast with the requirement of starting as fast as possible on the Go-signal. 
In the no-start condition, by contrast, participants only had to restrain the impulse of acci-
dentally starting upon the Go-signal. From an EVC perspective, both tasks required a con-
trol signal to be specifed to prevent a false start (i.e. response inhibition). However, when 
actual starts were required, an additional control signal needed to be specifed to initiate a 
fast start as soon as the Go-signal occurred (i.e. action initiation). In line with this reasoning, 
an increase in PFC oxygenation in the period between the Set-signal and the Go-signal 
was observed in both conditions. However, this increase was even more pronounced in the 
condition where participants actually had to produce a start. 

Conclusion 

Taken together, the literature reviewed in this chapter demonstrates that research on the 
neuroscience of self-regulatory control in sports is still in its infancy but has started to gather 
considerable momentum (see Figure 11.2). Performance in sports is increasingly understood 
as a task with inherent self-regulatory demands that athletes must cope with efectively. 
This perspective opens the feld for innovative insights from research addressing the “whys” 
and “whens” of successful self-regulatory control. In particular, theories that conceive of 
self-regulatory control as the output of a reward-based decision ofer a comprehensive com-
putational framework that allows specifc predictions regarding behavior and its neurophys-
iological mechanisms. As we have shown, components of one such framework, the EVC 
theory, can be plausibly related to various aspects of performance in sports, ranging from 
the initial willingness to invest efort to the decision to terminate a task. Fortunately, state-
of-the-art brain imaging technology nowadays permits several intriguing ways of capturing 
and manipulating neurophysiological processes during exercise, providing glimpses into 
what has been referred to as the “sporting brain” (Walsh, 2014, R859). That said, we feel it 
is important to call for more neuroscientifc research on self-regulated sports performance 
because key questions have not yet been addressed comprehensively. It will be important to 
test the dACC’s proposed role during sports performance, to analyze the efect of directly 
manipulating the value of self-regulatory control, to investigate the potential neurocompu-
tational overlap between physical and mental eforts (Ritz, Frömer, & Shenhav, 2020), and 
to get a better understanding of the diferences between elite and recreational athletes in the 
neuronal processing of the self-regulatory demands in sports. We believe these are exciting 
questions and with this chapter we hope to encourage further research on self-regulatory 
control in sports. 

Notes 

1 Sometimes also referred to as self-control or cognitive control. 
2 Indeed, research indicates that perceived exertion, rather than physiological resource depletion 

(e.g. locomotor muscle fatigue), might be the signal that ultimately leads to the termination of an 
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exercise (e.g. Chapter 10, this volume; Marcora, Staiano, & Manning, 2009; Staiano, Bosio, de 
Morree, Rampinini, & Marcora, 2018). 

3 Clearly, this example only applies to a scenario where the runners’ only goal is to qualify and not 
to achieve a personal best or win the race. 

4 Interestingly, research on pacing implies a process with a striking similarity to EVC theory, when 
it comes to how athletes pace themselves during competition: “intensity is regulated within the 
brain based on a complex algorithm involving peripheral sensory feedback and the anticipated 
workload remaining” (Abbiss & Laursen, 2008, p. 239). 

5 Research suggests that sender-detector separations of ca. 3 cm optimize signal-to-noise ratio 
(Boas, Elwell, Ferrari, & Taga, 2014; Ekkekakis, 2009). 

6 Indeed, research shows that task termination occurs well before physiological resources are fully 
depleted or bodily homeostasis is threatened (Marcora & Staiano, 2010; Morales-Alamo et al., 
2015). 

7 Systematic research on how long participants continue after this drop is currently lacking and 
represents an exciting future research question. 

8 α-waves are associated with mental inactivity and β-waves have been linked with cognitive infor-
mation processing. Thus, if a demanding task is performed with a high α-wave/β-wave ratio, this 
can be interpreted as an indicator for energy-efcient cortical functioning (Ludyga et al., 2016). 

9 It has to be noted that, while some research supports the notion that specifc physical or cognitive 
trainings generalize beyond the specifc functions they presumably address ( Jaeggi, Buschkuehl, 
Jonides, & Perrig, 2008; Sherrington, Tiedemann, Fairhall, Close, & Lord, 2011), there is also an 
accumulating body of research that indicates that such efects are task-specifc and do not gener-
alize (Giboin, Gruber, & Kramer, 2015; Giboin et al., 2019, Melby-Lervag & Hulme, 2013). 
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